СНКОМ. 6025

BEZIEHUNG ZWISCHEN STRUKTUR UND GELCHROMATOGRAPHISCHEM VERHALTEN VON PYRIMIDINVERBINDUNGEN

C. WASTERNACK

Sektion Biowissenschaften der Martin-Luther-Universität Halle, Fachbereich Biochemie, Biologische Abteilung, X 40 Halle/Saale, Neuwerk I (D.D.R.)

(Eingegangen am 9. Februar 1972)

SUMMARY

Relation between structure and gel chromatographic behaviour of pyrimidine compounds

Sephadex G-10 adsorption chromatography was employed for the separation of pyrimidines. The V_e^0 -values of about 140 different pyrimidine compounds have been estimated in a highly reproducible manner.

Examples were given for the use of Martin's relation in column chromatography of pyrimidines on Sephadex G-10. A relation was demonstrated between a log function of V_e^0 -values and the pattern of substitution of the pyrimidine nucleus. The contribution of a substituent to the chromatographic behaviour was dependent on the ring position. Methylation raised the V_e^0 -values in the order 1-CH₃ < 3-CH₃ < 6-CH₃ < 5-CH₃. Adsorption on the gel was especially lowered by N-methylation. The chromatographic contributions of ribosyl and deoxyribosyl groups were different and suggest gel-solid interaction for these compounds, too.

The additivity of the $\triangle \log V_e^0$ -values exists for a part of compounds and can be used to predict elution volumes.

EINLEITUNG

In der thermodynamischen Beziehung

$$\Delta G^{\circ} = -RT \ln K. \tag{1}$$

ist ein linearer Zusammenhang zwischen der freien Energie ΔG^0 und einer Gleichgewichtskonstanten zweier Zustände gegeben. Durch Einbeziehung des R_F -Wertes als substanzspezifische Grösse einer chromatographischen Anordnung in diese Gleichung schuf Martin¹ eine thermodynamische Formulierung der Chromatographie:

$$\Delta G^{0} = RT \ln \left(\frac{1}{R_{F}} - 1 \right) \cdot \rho \tag{2}$$

bzw.

$$\frac{\Delta G^0}{2.3 RT} = \log \left(\frac{I}{R_F} - I \right) + \log \rho \tag{3}$$

 R_M eingeführt. Der R_M -Wert setzt sich nach Martin¹ additiv aus dem R_M -Beitrag einer Grundkonstanten (R_M^0) und den R_M -Beiträgen einzelner Teile eines Moleküls (ΔR_M) zusammen:

$$R_{M} = R_{M}^{0} + m\Delta R_{M1} + n\Delta R_{M2} + \dots$$
 (4)

Der Betrag der Grundkonstanten R_{M^0} enthält hierbei die meist nicht zu bestimmende Systemkonstante.

Der Vorteil der Martin'schen Beziehung liegt in der Möglichkeit, aus relativ einfachen, mit geringstem Substanzverbrauch tätigen chromatographischen Verfahren Hinweise auf die Struktur der Verbindungen zu erhalten. Die Gleichung 4 stellt eine Näherung dar, von der u.a. durch sterische Beeinflussung benachbarter Gruppen, intramolekulare Wasserstoffbrücken, verschiedene Dissoziations- oder Tautomeriegleichgewichte sowie Substanz-Träger-Wechselwirkungen Abweichungen auftreten^{1,3}. Hier wird die R_M -Wertbeziehung als indirekte Methode für die Erfassung derartiger struktureller Grössen nützlich. Ihre erfolgreiche Anwendung ist an eine hohe Reproduzierbarkeit des R_F -Wertes und des chromatographischen Systems (log $1/\rho$), nicht aber an klassische Verteilungsverfahren gebunden⁴.

Bei unseren Untersuchungen zur säulenchromatographischen Trennung von Pyrimidinen und Purinen an Sephadex G-10 erwies sich der Trennprozess als strukturabhängiger Adsorptionsvorgang^{5,6}. Das Trennverfahren liefert substanzspezifische reproduzierbare Elutionskonstanten (V_e^0 , relativer Fehler 2 %), die bei hohem Trennvermögen der Säule infolge "reversibler Adsorption" der Verbindungen an der starkvernetzten Gelmatrix über einen grösseren Wertebereich verteilt sind, als das für Gelfiltrationsvorgänge entsprechend der Molekülgrösse der Fall ist.

Als substanzspezifische Grösse wurde die Elutionskonstante V_e^0 als Quotient aus der Differenz von Elutionsvolumen der Verbindung V_e minus Ausschlussvolumen V_0 und dem Ausschlussvolumen V_0 ermittelt. Ihre Verwendung besitzt mehrere Vorteile^{6,7}. Da sie als

$$V_e^0 = \frac{V_c - V_0}{V_0} = \frac{I}{R_F} - I$$

nach Logarithmierung mit dem R_M -Wert identisch ist, kann sie als $\log V_e^0$ in die Gleichung 3 eingesetzt werden:

$$\frac{\Delta G^0}{2.3 RT} = \log V_e^0 + \log \rho$$

und die Additivität der chromatographischen Beiträge von Molekülteilen liefern. Im Rahmen unserer Untersuchungen über Pyrimidine prüften wir die Gültigkeit der Martin'schen Beziehung für eine gelchromatographische Anordnung sowie die Verbindungsklasse der Pyrimidine. Über die Ergebnisse hierzu soll im folgenden berichtet werden.

MATERIAL UND METHODEN

Die Messwerte sind Mittelwerte aus 3-6 Bestimmungen.

Die Bezeichnung der Verbindungen erfolgte nach Brown⁸ bzw. Pfleiderer⁹ unter Verwendung folgender Ringnummerierung:

Die Herkunft der Substanzen ist durch Abkürzungen gekennzeichnet*. Es bedeuten:

Arco = Arcochemie (Berlin-West)

AWD = Arzneimittelwerk Dresden (D.D.R.)

BCh = Berlin-Chemie (D.D.R.)

Bu = Dr. Budječinsky (Prag, C.S.S.R.)

Cal = Calbiochem (Los Angeles, V.S.A.)

Ch = Chemapol (Prag, Tschechoslowakei)

Fe = Ferak (Berlin-West)

Fl = Fluka (Buchs, Schweiz)

La = Dr. LAMBEIN (Ghent, Belgien)

Li = Koch-Light Lab. Ltd. (London, Grossbritannien)

M = Merck (Darmstadt, B.R.D.)

Pi = C. Pinnow (Berlin-West)

Pr = Dr. Pryštas (Prag, C.S.S.R.)

Re = Reanal (Budapest, Ungarn)

S = Schuchardt (München, B.R.D.)

Sa = Dr. Sampson (Bracknell, Grossbritannien)

Sch = Prof. Dr. Schellenberger (Halle, D.D.R.)

Ser = Serva (Heidelberg, B.R.D.)

Si = Sigma (St. Louis, V.S.A.)

Sp = Spora (Prag, C.S.S.R.).

ERGEBNISSE UND DISKUSSION

In der Tabelle I sind die V_e^0 -Werte und ihre Logarithmen der geprüften Verbindungen in vier Gruppen in der Reihenfolge steigender V_e^0 -Werte zusammengestellt. Der Messfehler der V_e^0 -Werte liegt ab $V_e^0 = 0.30$ bei 2 %.

Der zur Trennung notwendige Abstand zweier Verbindungen, als ΔV_{e^0} aus ihren V_{e^0} -Werten formuliert, wurde aus den Fraktogrammen und Tabelle I ermittelt.

Im Bereich von $V_e^0 = 0.50-2.0$ können zwei Verbindungen bei einer durchschnittlichen theoretischen Bodenhöhe H = 0.12 und der verwendeten Säulenlänge von 235 cm mit einem $\Delta V_e^0 = 0.20$ quantitativ getrennt werden. So lassen sich die Substanzpaare U1acil-Cytosin, Uridin-Thymidin, Orotidin-6-Azauridin, Cytosin-Thymin usw. vollständig trennen (vgl. Fig. 2a und 2b in Lit. 5). Qualitative Auf trennungen werden zwischen $V_e^0 = 0.50-2.0$ bei einem ΔV_e^0 von 0.08-0.12 noch erreicht. Über $V_e^0 = 2.0$ sind zu einer quantitativen bzw. qualitativen Trennung zweier Verbindungen grössere ΔV_e^0 -Werte erforderlich (0.9 und 0.6), weil die Zu nahme der Bandenbreite sich störender bemerkbar macht.

'O C. WASTERNACK

'ABELLE I usammenstellung der ermittelten V_e^0 -werte und log V_e^0 -werte der derivate des iracils, 6-azauracils, pyrimidins und purins, jeweils nach steigendem V_e^0 -wert geordnet

Īr.	Verbindung	Herkunft	MG	V _o 0-Wert	Log V _e 0-Wert	
	(Trivialname und Nomenklaturname)				Ermittelt	Errec
Ira	cil-Dorivate					- San
I	UMP(5'); Uridin-5'-monophosphat	Si	324	0.11	— 0.963	
2	CMP(5'); Cytidin-5'-monophosphat	Si	323	0.13	0.903	
3	TMP(5'); Thymidin-5'-monophosphat	Si	322	0.30	-0.519	
4	Orotidin; 1-β-D-Ribofuranosidoorotsäure	Ser	288	0.35	-0.452	-0.4
5	5-Carboxyuracil	\mathbf{Pr}	156	0.42	-0.379	 0.3
5 6	2-Alanyl-3-isoxazolin-5-on	La	172	0.43	— ი. ვ66	
	1,3,5-Trimethyl-2-thiouracil	\mathbf{Pr}	180	0.47	0.328	
7 8	Willardiin; 1-Alanyluracil	La	199	0.48	-0.319	-o.3
9	5-Hydroxyuridin	Si	260	0.52	-0.284	
0	5-Fluordesoxyuridin	Cal	246	0.55	-0.257	-0.2
I	5,6-Dimethyl-2-thiouracil	\mathbf{Pr}	¹ 54	0.58	-0.237	•
2	Isowillardiin; 3-Alanyluracil	La	199	0.60	-0.222	-0.2
3	3,6-Dimethyluridin	\mathbf{Pr}	272	0.78	 0.108	-0.1
4	Pseudouridin, 5-β-D-Ribofuranosidouracil	Si	244	0.86	o.o66	-0.0
5	5-Hydroxymethyldesoxyuridin	Si	258	0.90	0.046	-0.0
5 :6	3-Benzoyl-6-methyluracil	Pr	230	0.96	810.o—	0.0
7	4-Amino-5,6-dimethyluridin	\mathbf{Pr}	273	ი.96	810.o-	-0.0
١Š	6-Methyl-5-fluormethyluracil	\mathbf{Pr}	158	0.96	810,0-	-0.0
19	Uridin; 1-β-D-Ribofuranosidouracil	Si	244	0.98	-0.011	-0.0
(O	5-Aminouridin	\mathbf{Pi}	259	1.02	0.007	
Į.	Orotsäure; 2,4-Dihydroxy-6-					
	carboxypyrimidin	Ch	156	1.03	0.011	
12	2-Thiouracil	S.	128	1.04	810.0	0.0
:3	5-Bromdesoxyuridin	Ser	307	1.04	810.0	0.0
14	Desoxyuridin; 1-β-2'-Desoxy-D-		•			
•	ribofuranosidouracil	Ser	228	7,06	0.025	0,0
:5	1,3-Dimethyluracil	Si	140	1.08	0.033	0.0
;6	1,3,6-Trimethyluracil	\mathbf{Pr}	154	20.1	0.038	0.0
17	5,6-Dimethyluridin	\mathbf{Pr}	272	1,09	0.039	0.0
;Š	5-Fluoruracil	Ser	130	1.10	0.041	0.0
19	Thyminribosid; 1- β -D-ribofurano-		_		,	
	sidothymin	Cal	258	I.II	0.041	0.0
JO.	5-Bromuridin	Fe	333	1.12	0.049	0,0
I	3-Methylcytidin	Cal	370	1.15	0.061	0.0
2	Cytidin; 1-β-D-ribofuranosidocytosin	Si	243	1.20	0.078	0.0
3	Thymidin; 1-β-2'-Desoxy-D-ribofurano-				•	
,,,	sidothymin	Si	242	1.23	0.091	0.0
14	1,3-Dimethyl-5-phenylbarbitursäure	\mathbf{Pr}	232	1.25	0.097	0.1
5	1,6-Dimethyluracil	Si	172	1.25	0.097	0.0
16	5-Methyldesoxycytidin	Cal	268	1.27	0.104	0.1
7	6-Carbmethoxypyrimidin	\mathbf{Pr}	184	1.29	0.111	
8	Desoxycytidin; 1-β-2'-Desoxy-D-		•			
,-	ribofuranosidocytosin	Cal	227	1.31	0.117	0.0
9	1-Methyl-5-nitrouracil	\mathbf{Pr}	155	1.39	0.143	Ο,
o	Barbitursäure; 2,4,6-Trihydroxypyrimidin	Si	128	1.45	0.163	
I	5-Diazauracil	Si	138	1.50	0.176	t to t
	Isobarbitursäure; 2,4,5-Trihydroxy-			-		
, 	pyrimidin	Si	128	1.54	0.188	
13	Uracil; 2,4-Dihydroxypyrimidin	Ch	112	1.55	0.190	·
17.	6-Methyluracil	Si	126	1.73	0.238	0.
4	5-Joduridin	Cal	370	1.76	0.246	0.1
5	Cytosin; 4-Amino-2-hydroxypyrimidin	Si	111	1.77	0.248	
	5-Methylcytosin	Fi	125	1.79	0.253	_
17						0.1
18	5-Joddesoxyuridin	Cal	354	1.83	0.263	0

ABELLE I (fortgesetzt)

Tr.	Verbindung	Herkunft	MG	V_e^0 - Wert	Log V _e 0-Wert	
	(Trivialname und Nomenklaturname)				Ermittelt	Erreci
50	5,6-Dimethylcytosin	Pr	139	1.85	0.268	0.325
51	4-Amino-5,6-dimethyluracil	\mathbf{Pr}	155	1.89	0.276	0.221
52	Thymin; 2,4-dihydroxy-5-methylpyrimidin	Si	126	1.92	0.283	
5 3	4-Methoxy-5,6-dimethyluracil	\mathbf{Pr}	156	1.96	0.298	0.378
54	5-Carboxymethylcytosin	\mathbf{Pr}	171	1.96	0.298	0.264
55	5-Chloruracil	\mathbf{Pr}	147	2.04	0.310	ٔ ۔۔۔۔ '
56	5,6-Dimethyluracil	Pr	140	2.06	0.313	0.267
57	5-Aminouracil	Si	127	2.28	0.358	
58	Dimithirimol; 2-Dimethylamino-4-methyl-		•		-55	
-	5-butyl-6-hydroxypyrimidin	Sa	161	2.61	0.417	
59	2-Phenylbarbitursäure	\mathbf{Pr}	190	2.85	0.455	
60	5-Bromuracil	Re	190	2.86	0.456	
61	6-Chloruracil	Pr	147	2.86	0.456	
62	3-Methyl-5-nitrouracil	\mathbf{Pr}	159	3.09	0,490	0.461
63	6-Methyl-5-chlormethyluracil	Pr	175	3.20	0.505	0.478
64	5-Joddesoxycytidin	Cal	353	3.23	0.509	0.409
65	5-Nitrouracil	Li	157	3.33	0.522	
66	5-Methyl-6-chlormethyluracil	Pr	175	3.53 3.64	0.561	0.524
67	Ethirimol; 2-Äthylamino-4-methyl-5-		-73	3.04	0.301	0,524
٠,	butyl-6-hydroxypyrimidin	Sa	161	4.38	0.641	
68	6-Amino-2-thiouracil	Pr	-		•	
69	5-Joduracil	Ch	141	4.48	0.651	
og	5-Joharaca	Cit	237	4.70	0.676	
lza-	Derivate					
70	6-Azauridin; 1-β-D-ribofuranosido-6-					
•	azauracil	Sp	246	0.45	-0.345	
71	2-Thio-6-azathymin	Pr	143	0.47	-0.328	
72	2-Thio-6-azauracil	\mathbf{Pr}	129	0.63	-0.201	
73	r-Methyl-6-azauracil	\mathbf{Pr}	127	0.68	-0.166	
74	3-Benzoyl-6-azauracil	Pr	317	0.87	-0.082	
75	6-Azauracil; 1,3,6-Triazin	Si	113	0,89	-0.052	
76	6-Azathymin; 5-Methyl-1,3,6-triazin	Fl	127	0.89	-0.052	
77	4-Methylmercapto-6-azauracil	\mathbf{Pr}	143	0.93	-0.032	
78	1,3-Dimethyl-6-azauracil	\mathbf{Pr}	141	0.98	-0.010	
79	5-Chloräthyl-6-azauracil	Pr	175	0.98	-0.010	
80	1,3-Dibenzoyl-6-azauracil	Pr	321	1.04	0.015	
81	5-Azauracil; 1,3,5-Triazin	Si	113	1.06	0.025	
82	5-Azacytosin; 4-Amino-1,3,5-triazin	Pr	113	1.07	0.031	
	5-Phenyl-6-azauracil	Pr	189	1.28	0.010	
84	3-Methyl-6-azauracil	Pr	127	1.39		
		Pr	•		0.143	
85 86	2-Mercapto-6-azauracil 5-Amino-6-azauracil	Pr	129 128	2.33 2.63	0.367	
87		Pr	129	•	0.419	
	1,3-Dimethyl-2-thio-6-azauracil	Pr	_	3.44	0.537	
88	8-Azaxanthin; 2,4-Dioxotetrahydro-v-	T-T	157	3.80	0.580	
89		Ch		4 #0		
	triazolo-[d]-pyrimidin	Cn	153	4.50	0.653	
90	8-Azaguanin, 2-Amino-4-oxodihydro-v-	Ch				
	triazolo-[d]pyrimidin	Ch D-	152	4.60	0.663	
91	3-Methyl-4-thio-6-azauracil	Pr	143	5·57	0.747	
92		T31		00	<u>-</u> '	
	pyrimidin	Fl	136	7.88	0.897	
Pur	imidin-Derivate					
93	2-Methyl-5-carbmethoxy-6-äthoxy-					
		T)				
	pyrimidin	$\mathbf{B}\mathbf{u}$	196	0.45	 0.347	-

'ABELLE I (fortgesetzt)

Ir.	Verbindung	Herkunft	MG	V_e^0 -Wert	Log V _e 0-Wert	
	(Trivialname und Nomenklaturname)				Ermittelt	Errec
95	2,6-Dihydroxy-4-carboxy-5-fluorpyrimidin	Bu	174	0.73	o.137	
	I-Methyl-4-methoxypyrimidin	\mathbf{Pr}	126	1.08	0.033	
	2,4-Dimethoxy-5-methyl-6-chlorpyrimidin	Pr	189	r.08	0.033	
	5-Hydroxypyrimidin	Bu	96	1.21	0.083	
99	2-Mercapto-5-methoxypyrimidin	Bu	142	1.44	0.158	
	2-Amino-5-methoxy-6-hydroxypyrimidin	Bu	141	1.53	0.185	
OI	2,4-Dichlor-5,6-dimethylpyrimidin	\Pr	177	1.91	0.281	
02	2-Chlorpyrimidin	Fl	128	1.96	0.291	
3	2-Methyl-4-amino-5-äthoxymethyl-	•		-	_	
J	pyrimidin	Sch	167	1.99	0.299	
04	6-Methyl-4-Chlorpyrimidin	\mathbf{Pr}	129	2.01	0.303	
5 5 5	2-Äthyl-4-amino-5-äthoxymethylpyrimidin 2-Methyl-4-methylamino-5-hydroxy-	Sch	181	2.17	0.337	******
	methylpyrimidin	Sch	152	2.35	0.371	
7	2-Aminopyrimidin	$\mathbf{F}\mathbf{l}$	97	2.41	0.383	
8	2,4,5-Triamino-6-hydroxypyrimidin	Arco	143	2.50	0.398	
09	2-Amino-4,6-dimethyl-5-hydroxypyrimidin	Bu	145	2.54	0.405	
10	4,6-Dichlorpyrimidin	Pr	144	2.72	0.435	
II	2,6-Dihydroxy-5-brompyrimidin	Bu	191	2.74	0.438	
12	2,4-Dimethoxy-6-methylpyrimidin	Pr	154	2.78	0.444	
13	2,4-Dimethoxy-5-methylpyrimidin	\mathbf{Pr}	154	2.79	0.446	
I 4	2-Amino-5-methoxypyrimidinsulfat	Bu	226	2.86	0.456	
15	4-Aminopyrimidin	Sch	95	3.54	0,540	
16	2 Amino-5-methoxy-6-chlorpyrimidin	Bu	159	3.71	0,569	
17	4,6-Dihydroxypyrimidin	Bu	112	4.20	0,643	
18	2-Amino-4-chlor-5-methoxypyrimidin	Bu	148	6.69	0.825	-
19	2,6-Dichlor-5-methoxypyrimidin	Bu	144	8.19	0.913	
uri	n-Derivate					
20	XMP(5'); Xanthosin-5'-monophosphat	Si	364	0.08	- 1.081	
21	IMP(5'); Inosin-5'-monophosphat	\mathbf{Re}	348	0.09	-1.032	
22	GMP(5'); Guanosin-5'-monophosphat	Re	363	0.22	-o.666	
23	NADP; Nicotinamidadenindinucleotid-	AWD .				
	phosphat	Si	743	0.22	- o.666	
24	AMP(5'); Adenosin-5'-monophosphat		347	0.22	- o.666	-
25	FAD: Flavinadenindinucleotid	Ser	7 ⁸ 5	0.26	-0.620	
26	FMN; Flavinadeninmononucleotid	Ser	456	0.28	o.553	
27	NAD; Nicotinamidadenindinucleotid	AWD	663	0.31	 0.509	
28 29	Inosin; 9-β-n-Ribofuranosylhypoxanthin Riboflavin; 6,7-Dimethyl-9-(D-1'-ribityl)-	Si	268	1.28	0.107	0,14
	isoalloxazin	M	376	1.38	0.140	
30	Harnsäure; 2,4,8-Trioxohexahydropurin	Si	168	1.53	0.186	0.12
31	6-Chlorpurinribosid	Ser	296	2.20	0.342	
32	Xanthin; 2,4-Dioxotetrahydropurin	Re	152	2.43	0.385	
33	Hypoxanthin; 4-Oxodihydropurin	Arco	136	2.51	0.400	0.38
34	Guanosin; 9-β-D-Ribofuranosylguanin	Re	283.	2.60	0.416	
35	2-Desoxyguanosin; 9-(2'-Desoxy-β-D-		. .			
	ribofuranosyl)-guanin	Ser	267	2.80	0.447	—
	Purin; Imidazolo-[4,5-d]-pyrimidin	S	120	3.29	0.517	
37						
	furanosyl)-adenin	Ser	251	4.05	0.608	0.66
38	Allopurinol	Cal	136	4.80	0.681	"
39	Adenosin; 9-β-D-Ribofuranyl adenin	Si	267	4.99	0.698	0.57
40	Guanin; 2-Amino-4-oxo-dihydropurin	Re	151	5.11	0.708	0.57
	2-Chlorpurin	Si	154	7.25	ი.86ვ	-
42	Adenin: 6-Aminopurin	M	135	8.13	0.010	0.82

Es konnte keine Beziehung zwischen dem log V_e^0 -Wert einer Substanz und dem Molekulargewicht (Tabelle I), den Hammett-Konstanten oder pK_a -Werten^{10,11} festgestellt werden. Das Fehlen einer negativen Korrelation zwischen dem V_e^0 -Wert und dem Molekulargewicht⁵, und die Adsorption als vorrangiges Trennprinzip⁶ sind für die folgenden Strukturchromatographiebetrachtungen eine Voraussetzung.

Für Nukleotide ist die Gelchromatographie ohne hinreichende Auflösung, während bei $V_e{}^0 > 0.40$ die Substanzen durch ausreichend hohe Elutionskonstanten einer strukturchromatographischen Auswertung zugänglich sind.

Die auf der Grundlage der Martin'schen Beziehung ermittelten $\Delta \log V_e^0$ -Werte für bestimmte Substituenten oder Molekülteile sind in Tabelle II zusammengestellt. Sie waren Ausgangspunkt für die Berechnung der $\log V_e^0$ -Werte (" $\log V_e^0$ errechnet").

TABELLE II zusammenstellung der extstyle 1 log V_ℓ^0 -werte verschiedener substituenten

Substituent	Stellung	Verbindung	△ log Ve ⁰	
			Einzeln	Gemittelt
Ribosyl	N-1 N-1 N-1 N-1 N-1	6-Azauridin Uridin Cytidin 5,6-Dimethyluridin 4-Amino-5,6-dimethyluridin Thyminribosid	-0.293 -0.201 -0.170 -0.274 -0.296 -0.238	0.245
	N-1 N-1 N-1 N-1	Orotidin 5-Joduridin 5-Bromuridin 5-Aminouridin	-0.463 -0.422 -0.407 -0.351	
	C-5	Pseudouridin Inosin Guanosin Adenosin 6-Chlorpurinribosid	-0.256 -0.293 -0.292 -0.212 -0.230	-0.257
Desoxyribosyl	N-1 N-1 N-1	5-Fluordesoxyuridin 5-Bromdesoxyuridin 5-Joddesoxyuridin	-0.298 -0.441 -0.409	
	N-1 N-1 N-1	Desoxycytidin Desoxyuridin Thymidin 5-Methyldesoxycytidin	-0.131 -0.165 -0.188 -0.149	-0.158
		Desoxyguanosin Desoxyadenosin	-0.261 -0.090	
Methyl	N-1	1-Methyl-5-nitrouracil	-0.379	
	N-1 N-1 N-1	1,6-Dimethyluracil 1-Methyl-6-azauracil 1,3-Dimethyl-6-azauracil	-0.140 -0.114 -0.154	-o.136
	N-3 N-3 N-3 N-3 k) N-3 k) N-3	3-Methyl-5-nitrouracil 1,3,6-Trimethyluracil 1,3-Dimethyl-6-azauracil 3-Methyl-6-azauracil 3-Methylcytidin 3,6-Dimethyluridin 1,3-Dimethyluracil	-0.022 -0.060 -0.156 -0.091 -0.017 -0.118 -0.021	 0.069

TABELLE II (fortgesetzt)

Substituent		Stellung	Verbindung	$\triangle \log V_e^0$	
•				Einzeln	Gemittelt
· .		C-5 C-5 C-5 C-5 C-5 C-5 C-5	Thymin 5-Methylcytosin Thymidin 5,6-Dimethyluracil 6-Azathymin 5-Methyldesoxycytidin Thyminribosid	0.190 0.005 0.102 0.075 -0.019 -0.013 0.056	0.056
		C-6 C-6 C-6 C-6	6-Methyluracil 5,6-Dimethylcytosin 5,6-Dimethyluracil 5,6-Dimethyluridin	0.048 0.015 0.030 -0.006	0,021
Phenyl		C-5	5-Phenyl-6-azauracil	0.16r	
•.•		C-2	2-Phenylbarbitursäure	0.294	<u>~</u>
Benzoyl		N-3 N-3	3-Benzoyl-6-azauracil 6-Methyl-3-benzoyluracil	-0.030 -0.256	
		N-r	1,3-Dibenzoyl-6-azauracil	0.067	
Mercapto		C-2	2-Mercapto-6-azauracil	0.419	
Amino	(k)	C-2	2-Aminopyrimidin	0.249	
	(k)	C-4 C-4 C-4	4-Amino-5,6-dimethyluridin 4-Aminopyrimidin 4-Amino-6-methyluracil	0.056 0.406 0.036	
		C-5 C-5 C-5	5-Aminouridin 5-Aminouracil 5-Amino-6-azauracil	0.018 0.168 0.471	
		C-6 C-6	5,6-Diaminouracil 6-Amino-2-thiouracil	-0.172 0.651	
Carboxyl		C-5 C-6 C-6	Uracil-5-carbonsäure Orotsäure Orotidin	-0.569 -0.179 -0.441	
		C-5	Carboxymethylcytosin	-0.040	
Hydroxyl	(k)	C-2 C-5 C-5	Barbitursäure Isobarbitursäure 5-Hydroxypyrimidin	-0.460 -0.002 -0.051	
	•. •	C-6	Barbitursäure	-0.027	
			Hypoxanthin Harnsäure Xanthin	-0.117 -0.199 -0.015	
Fluormethy	1	C-5	6-Methyl-5-fluormethyluracil	-0.222	
Chlormethy		C-5	6-Methyl-5-chlormethyluracil	0.267	
		C-6	5-Methyl-6-chlormethyluracil	0.278	
Fluor		C-5 C-5	5-Fluoruracil 5-Fluordesoxyuridin	-0.149 -0.246	•
Chlor	(k)	C-2	2-Chlorpyrimidin	0.184	
		C-4 C-4	4,6-Dichlorpyrimidin 6-Methyl-4-chlorpyrimidin	o.153 o.148 }	0.151
	71.5	C-5	5-Chloruracil	0.120	0.157

TABELLE II (fortgesetzt)

Substituent		Stellung	Verbindung	$\Delta \log V_e^0$	
			ت ساند دون پرېرو د د د د د د د د د د د د د د د د د د د	Einzeln	Gemittelt
	(<i>k</i>)	C-6 C-6	6-Chloruracil 5-Methyl-6-chlormethyluracil	0.266 0.248	0.257
	(,		6-Chlorpurin	0.346	
Brom		C-5	5-Bromuracil	0.266	
Jod		C-5 C-5 C-5 C-5	5-Joddesoxyuridin 5-Joduridin 5-Joddesoxycytidin 5-Joduracil	0.238 0.257 0.302 0.482	0.319
Alanyl		N-1	Willardiin	-0.509	
		N-3	Isowillardiin	-0.412	
Nitro		C-5	5-Nitrouracil	0.332	
Aza		N-6 N-6 N-6 N-6 N-6 N-6 N-6	6-Azauracil 1-Methyl-6-azauracil 6-Azathymin 5-Phenyl-6-azauracil 2-Thio-6-azauracil 6-Azauridin 3-Benzoyl-6-azauracil	-0.242 -0.220 -0.242 -0.319 -0.219 -0.334 -0.212	o.255
		N-5 N-5	5-Azauracil 5-Azacytosin	-0.165 -0.146	-0.157

In den vier Gruppen der Tabelle I galten Pyrimidin (errechnet), Uracil, 6-Azauracil und Purin als "Grundsubstanz".

In Anbetracht der erheblich unterschiedlichen Elektronendichteverteilung in Pyrimidinring war eine Abhängigkeit des Δ log V_e^0 -Wertes eines Substituenten vor dessen Stellung am Ring zu erwarten. Diese Annahme wird in Tabelle II insbesonder an den Δ log V_e^0 -Werten für die Methyl-Gruppe bestätigt. Die ermittelten chromato graphischen Beiträge von Substituenten galten deshalb nur für eine bestimmte Stellung. Die Tabellen III und IV sind Beispiele für die erfolgreiche Verwendung der Martin'schen Beziehung bei Pyrimidinverbindungen.

TABELLE III ERMITTLUNG VON LOG V_e^0 FÜR 3,6-DIMETHYLURIDIN

Bestandteil	Log Ve0-Wert			
	+	. ••••		
Uracil	0.190			
Ribosyl-		0.246		
3-Methyl-		0.069		
6-Methyl-	0.021			
	0.211	0.315		
3,6-Dimethyluridin		0.104 (errechnet)		

TABELLE IV ermittlung von log $V_{
m e}^0$ für 5-phenyl-1,3-dimethylbarbitursäure

Bestandteil	Log Ve0-Wert		
	+		
Barbitursäure Phenyl- 1-Methyl- 3-Methyl-	o. 163 o. 161	o.136 o.069	
	0.324	0.205	
5-Phenyl-1,3-dimethylbarbitursäure 5-Phenyl-1,3-dimethylbarbitursäure	0.119 0.09 7	(errechnet) (ermittelt)	

Es ergibt sich für eine Reihe von Verbindungen (vgl. unten) ein hinreichend additiver Zusammenhang, sofern für die einzelnen Inkremente gute Mittelwerte erreicht werden und sie positionsspezifisch in die Summe eingehen. Dabei ist die Natur des chromatographischen Prozesses unbedeutend. So liegt auch bei dünnschichtchromatographischen Trennungen an Cellulose bedingt ein additiver Zusammenhang vor¹¹. Die adsorptionsverändernde Eigenschaft eines Substituenten und die Grösse seiner chromatographischen Beiträge ($\Delta \log V_e^0$) werden aus chemischer Sicht erklärbar.

Methylgruppe

Als Voraussetzung für eine Substanz-Gel-Wechselwirkung von N-heterozyklischen Verbindungen wurde bisher ein Stickstoffatom diskutiert, dessen H-Atom Wasserstoffbrücken bilden kann^{5,7,12}. Nach den Untersuchungen von Streuli^{13,14} an Sephadex LH-20 erfolgt Adsorption durch H-Brücken insbesondere in nichtplanaren und heterozyklischen Verbindungen. Nach unseren Untersuchungen zur Temperaturabhängigkeit der Trennung von Purin- und Pyrimidinverbindungen an Sephadex G-10 liegt die Energie der Wechselwirkung zwischen Substanz und Gelmatrix für einige Verbindungen im Bereich schwacher H-Brücken⁶. Damit übereinstimmend erfolgt bei N-Methylierung eine Adsorptionserniedrigung. Sie wird als negativer Δ log V_e^0 -Wert der Methylgruppe erkennbar (Tabelle II), wobei Methylierung am N-1 eines Uracilringes zu einer starken Adsorptionserniedrigung, d.h. einem beträchtlich negativen Δ log V_e^0 -Wert der Methylgruppe führt. C-Methylierung in 5- oder/und 6-Stellung führt dagegen zu einem positiven Δ log V_e^0 -Wert, d.h. einer Adsorptionserhöhung gegenüber der Grundsubstanz. Der Δ log V_e^0 -Wert von Methylgruppen am Uracilring steigt in der Reihenfolge

$$1-CH_3 < 3-CH_3 < 6-CH_3 < 5-CH_3$$

so dass die Methylgruppe keinen sterisch bzw. räumlich bedingten Adsorptionsbeitrag liefert.

Die in dieser Reihenfolge nach links ansteigende Adsorption unterstreicht die besondere Bedeutung des heterozyklischen N-Atoms für die Adsorption, wobei im N-I und N-3 gegenüber Pyrimidinen vorliegt, so dass die Adsorption hier sinkt (vgl. 6-Azauracil in Tabellen I und II).

Die Adsorptionserniedrigung durch N-Methylierung tritt auch bei Purinen auf^{7,12}. Sweetman und Nyham⁷ nehmen an, dass Purine in der Lactimform (z.B. Adenin) vorwiegend über die ungeteilten Elektronenpaare der N-Atome H-Brücken zu den OH-Gruppen der Gelmatrix ausbilden, während Purine in der Lactamform (z.B. Hypoxanthin und Guanin) mit dem Wasserstoff ihres Lactamstickstoffs H-Brücken zum Sauerstoff der Dextranhydroxylgruppen bilden sollen. In jedem Falle scheint der Stickstoff für den Adsorptionsvorgang von Heterozyklen besondere Bedeutung zu haben, und seine Methylierung senkt diesen Prozess beträchtlich^{7,12}. Dabei ist das N-I-Atom von Pyrimidinen angesichts eines Δ log V_e^0 -Wertes von -0.136 (Tabelle II) für die Methylgruppe in dieser Stellung den N-Atomen 3,7 und 9 im Purinring vergleichbar⁷.

Ribosyl- und Desoxyribosylgruppe

Der chromatographische Beitrag einer Ribosylgruppe am Purin bzw. Pyrimidinring ($\Delta \log V_{e^0}$, -0.257 bzw. -0.245) gleicht den Befunden von SWEETMAN UND NYHAM¹² an Purinen ($\Delta \log V_{e^0}$, -0.258).

Die Elutionsreihenfolge eines Basengemisches von Nukleinsäurebausteinen bleibt auch bei der Gelchromatographie ihrer entsprechenden Nukleoside erhalten, so dass in einem log V_e^0/MG -Diagramm die Basen/Nukleosidpaare durch Parallel-

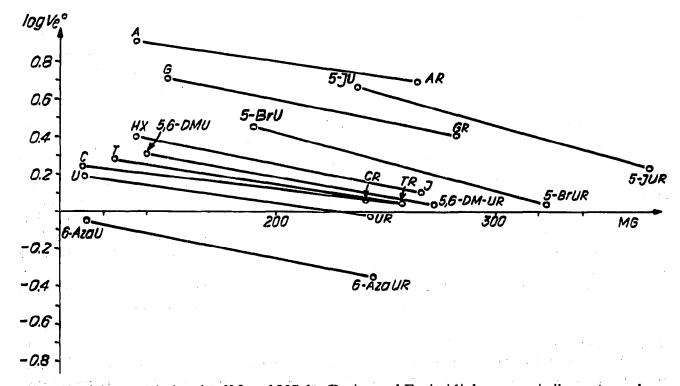


Fig. 1. Beziehung zwischen $\log V_{\ell^0}$ und MG für Purin- und Pyrimidinbasen sowie ihre entsprechenden Nukleoside. A = Adenin, AR = Adenosin; 6-AzaU = 6-Azauracil, 6-AzaUR = 6-Azauridin; 5-BrU = 5-Bromuracil, 5-BrUR = 5-Bromuridin; C = Cytosin, CR = Cytidin; 5,6-DMU = 5,6-Dimethyluracil, 5,6-DM-UR = 5,6-Dimethyluridin; G = Guanin, GR = Guanosin; HX =

78 c. wasternack

verschiebung unterschieden sind (Fig. 1). Der heterozyklische Kern erscheint als Zentrum der Gel-Substanz-Wechselwirkungen. Ribose sowie Desoxyribose wurden bei Molekulargewichtsbestimmungen von Oligonukleotiden als gleichwertig betrachtet¹⁵.

Dieser Annahme widersprechen die hier ermittelten Δ log V_e^0 -Werte beider Gruppen mit einem Unterschied von — 0.100, der nicht durch die Molekulargewichtsdifferenz erklärt werden kann. Während Glucose bei Trennungen an Sephadex G-10 als Standard für eine wechselwirkungsfreie Gelchromatographie verwendet wurde¹⁶, sind mit Zuckern an Bio-Gel P-2 dem Molekulargewicht widersprechende Elutionswerte beobachtet worden¹⁷. Darüberhinaus zeigen Maltooligosaccharide bei der Chromatographie an Bio-Gel P-2 eine Temperaturabhängigkeit, die weitgehend eine Summe der Wechselwirkungen isochemischer Glucoseeinheiten darstellt¹⁸. Der Anteil dieser Wechselwirkung einer Glucoseeinheit steigt mit der Kettenlänge der Dextrine¹⁸.

Entgegen einer früheren Mitteilung¹⁵ muss nach den Befunden auch für Sephadex G-10 eine Wechselwirkung von Zuckern mit dem Gel berücksichtigt werden. Die stärkere Adsorption von Desoxyribosylverbindungen gegenüber Ribosylverbindungen an Sephadex G-10 (Tabelle I) steht in Übereinstimmung mit dem Anstieg der K_D -Werte von Polyalkoholen an DVS-9 bei Vergrösserung des C/OH-Verhältnisses¹⁹. Bei der Erklärung der stärkeren Adsorption von Desoxyribosylverbindungen müssen sterische Faktoren sowie Wechselwirkungen der Zucker zum Gel und Lösungsmittel herangezogen werden¹⁹.

Halogenatome

Die Elutionswerte 5-halogenierter Uracile steigen in der Reihenfolge F < Cl < Br < J (Tabelle I) und sind temperaturabhängig¹¹. Analog nimmt die Adsorption bei einer nach Determann und Walter¹⁶ modifizierten Aufnahme der Adsorptionskinetik in der Reihenfolge J > Br > Cl > F ab (Technik vgl. Lit. 6).

In der Reihenfolge F < Cl < Br < J steigt die Polarisierbarkeit bei Abnahme der Elektronegativität, so dass eine direkte Wechselwirkung der Halogenatome zum Gel durch Dipol- und Dispersionskräfte in Betracht gezogen wird. Damit stimmt eine starke Abweichung der Hammett-Geraden für Halogenphenole, -aniline und -benzoesäuren von der anderer Verbindungen dieser Substanzklassen überein². Für Halogenuracile weicht die Hammett-Gerade ebenfalls von der übriger Uracilverbindungen ab¹¹. Der Logarithmus der Elutionskonstante von 5-Halogenuracilen wächst annähernd proportional dem Radius des Halogenatomes¹¹ bzw. das Molekulargewicht von 6-Halogenpurinen korrelliert direkt proportional mit dem $\Delta \log V_e$ °-Wert des Halogenatoms².

In Anbetracht einer direkten Wechselwirkung der Halogenatome mit dem Gel kann eine Additivität im Sinne der R_M -Werttheorie nicht vorliegen.

Hydroxylgruppe

Die Ermittlung des chromatographischen Beitrages der OH-Gruppe von Pyrimidinen wird durch die Lactam-Lactim-Tautomerie erschwert, weil sie massgeblich das Ausmass der Adsorption bestimmt. Wie bei den Purinen adsorbiert bei den Pyrimidinen eine Lactim-Form stärker. So wird 2,4-Dihydroxy-5-methylpyrimidin (Thymin) mit $V_{\bullet 0} = 1.02$ vor 2.4-Dimethoxy-5-methylpyrimidin mit $V_{\bullet 0} = 2.70$ eluiert

2.06) nahezu gleich adsorbiert werden. Auffällig ist die stärkere Adsorption bei symmetrischer Anordnung der Hydroxylgruppen (4,6-Dihydroxypyrimidin, $V_{e^0} = 4.20$) gegenüber unsymmetrischer Stellung (2,4-Dihydroxypyrimidin, $V_{e^0} = 1.55$).

Die intramolekularen Wechselwirkungen der Hydroxylgruppe bzw. ihr Einfluss auf die Adsorptionszentren im Molekül lassen keine Verwendung des hier vorgelegten Materials im Sinne der R_M -Werttheorie zu.

Aminogruppe

Die Einführung einer Aminogruppe ausserhalb der 4-Stellung bewirkt eine Adsorptionserhöhung, weil mit der Aminogruppe eine wechselwirkungsaktive Gruppe mehr im Molekül vorliegt. Für Purine wurde aus der stärkeren Bindung von Adenin an Sephadex gegenüber Xanthin im Zuge der Gleichgewichtsdialyse eine Wasserstoffbrückenbildung zwischen der Aminogruppe und dem Äthersauerstoff der Gelmatrix abgeleitet, weil beide Verbindungen bei der Gleichgewichtsdialyse an unvernetzten Dextranketten sich gleich verhielten.

Eine Beteiligung der Aminogruppe am Trennprozess und die Möglichkeit intramolekularer Wechselwirkungen betrachten wir als Ursache für die Heterogenität der hier vorgestellten Aminogruppenwerte (Tabelle II). Deshalb existiert nach unseren Erfahrungen für die untersuchten Aminoverbindungen die R_M -Wert-Beziehung nicht, während für eine Reihe anderer Substituenten das vorliegende Zahlenmaterial unzulänglich ist (Phenyl-, Benzoyl-, und Mercaptogruppen).

KONKLUSION

Die Existenz von N-Atomen in 1,3-Stellung und 2 Oxogruppen im Uracilring verursacht eine beträchtlich ungleichmässige Elektronenverteilung in dieser "Grundsubstanz", und verschiedene Substituenten können intramolekulare Wechselwirkungen eingehen. Ein vom additiven Zusammenhang chromatographisch ermittelter Substituentenbeiträge abweichendes Verhalten kann hierbei eine Hilfe zur Strukturermittlung darstellen. So führt eine N-x-Methylierung im 5-Nitrouracil zu weitaus stärkerer Adsorptionserniedrigung ($\Delta \log V_e^0 = -0.379$) als in anderen Verbindungen ($\Delta \log V_e^0 = -0.136$). Intramolekulare Wechselwirkungen zwischen der Carboxylgruppe und der benachbarten Oxogruppe könnten auch in der Uracil-5-carbonsäure die Ursache einer ungewöhnlich niedrigen Adsorption ($\Delta \log V_e^0$ -5-COOH = -0.569 gegenüber $\Delta \log V_e^0$ -6-COOH = -0.179) sein. Darauf weist die Abnahme einer derartigen Wechselwirkung bei grösserer Entfernung der Carboxylgruppe vom Ring (5-Carboxymethylcytosin, $\Delta \log V_e^0$ -COOH = -0.040) hin.

Die Abhängigkeit der Adsorption von der Stellung und Art eines Substituenten scheint ein Widerspruch für die Additivität der Inkrementbeiträge nach der R_M -Werttheorie zu sein, der an dem starken Adsorptionsunterschied zwischen 1,3-Dimethyl-2-thio-6-azauracil ($V_e^0 = 3.80$) und 1,3-Dimethyl-6-azauracil ($V_e^0 = 0.98$) gegenüber 2-Thiouracil ($V_e^0 = 1.04$) und Uracil ($V_e^0 = 1.55$) deutlich wird.

Wir halten nach den vorliegenden Daten die R_M -Werttheorie für Pyrimidine bei der Gelchromatographie nur dort anwendbar, wo Stellung und Art des Substituenten bzw. weiterer am Ring substituierter Gruppen die N-Atome als Adsorptionszentren nur unwesentlich beeinflussen. Ihre Benutzung ist gegenüber Purinen ein-

80 C. WASTERNACK

hanges der Inkrementbeiträge stellt sie ein echtes Hilfsmittel dar. So können Elutionspositionen von Verbindungen bekannter Struktur vorausgesagt werden oder aus den Inkrementbeiträgen eine Strukturbestimmung unterstützen.

Die Natur der Verbindungsklasse bedingt durch die relativ grosse Anzahl von Zentren intra- und intermolekularer Wechselwirkungen eine Beschränkung, die gegebenenfalls die indirekte Erfassung jener Wechselwirkungen gestattet, die zur Strukturbestimmung beitragen.

Auch für die Beurteilung von Ursachen der Trennung niedermolekularer Verbindungen an Sephadex G-10 kann das vorgelegte Material dienen. Als Hauptursache der Adsorption erscheinen H-Brücken, die wahrscheinlich bei einigen Substanzen durch π -Bindungen verstärkt werden.

Folgende Abkürzungen wurden verwendet:

DVS = Dextran, das durch Divinylsulfon vernetzt ist

 ΔG^0 = freie Energie

H = theoretische Bodenhöhe = Länge der Säule/16· $(V_e/V_B)^2$

K = Gleichgewichtskonstante einer Reaktion

 $k = \Delta \log V_e^0$ mit errechneter Grundsubstanz ermittelt

MG = Molekulargewicht

 ρ = Phasenverhältnis

R = Gaskonstante

 R_F = Chromatographiekonstante, Verhältnis aus den Wanderungsstrecken von Substanz und Laufmittelfront

 $R_M = \log(I/R_F - I)$

Ve = Elutionsvolumen einer Substanz

 V_{e^0} = Elutionskonstante $(V_e - V_0)/V_0 = I/R_F - I$

 V_0 = Ausschlussvolumen T = absolute Temperatur.

DANK

Für wertvolle Hinweise bei der Abfassung des Manuskriptes danke ich den Herren Prof. Dr. H. REINBOTHE, Dr. L. NOVER und Dr. G. FISCHER. Für die Hilfe bei der Durchführung der Versuche danke ich Frau B. SAUER.

ZUSAMMENFASSUNG

Die Adsorptionschromatographie an Sephadex G-10 wurde für die Trennung von Pyrimidinen und Purinen genutzt. Von über 140 Verbindungen wurde die substanzspezifische Elutionskonstante V_{e^0} bestimmt.

Beispiele für die Anwendung der Martin'schen Beziehung in der Säulenchromatographie von Pyrimidinen an Sephadex G-10 werden gegeben. Der Beitrag eines Substituenten zum chromatographischen Verhalten einer Verbindung war von seiner Position im Ring abhängig. Methylierung erhöhte die V_e^0 -Werte in der Reihenfolge 1-CH₃ < 3-CH₃ < 6-CH₃ < 5-CH₃. Die Adsorption am Gel wurde besonders durch N-Methylierung gesenkt. Der chromatographischen Beitrag von Ribosylund Desoxyribosylgruppen war unterschiedlich und lässt auch für diese Ver-

Die Additivität der $\Delta \log V_e^0$ -Werte existiert für einen Teil der untersuchten Verbindungen und kann zur Vorhersage von Elutionsvolumina dienen.

LITERATUR

- 1 A. J. P. MARTIN, Biochem. Soc. Symp., 3 (1950) 4.
- 2 E. C. BATE-SMITH UND R. G. WESTALL, Biochim. Biophys. Acta, 4 (1950) 427.
- 3 I. E. Bush, Methods Biochem. Anal., 13 (1965) 357.
- 4 H. K. SCHAUER UND R. BULIRSCH, Z. Naturforsch., 10b (1955) 683.
- 5 C. Wasternack, Pharmazie, 25 (1970) 740.
 6 C. Wasternack und H. Reinbothe, J. Chromatogr., 72 (1972) im Druck.
- 7 L. SWEETMAN UND W. NYHAM, J. Chromatogr., 59 (1971) 349. 8 D. J. Brown, The Pyrimidines, Interscience, Wiley, N.Y., London, 1962.
- 9 W. PFLEIDERER, in H. M. RAUEN (Editor), Biochemisches Taschenbuch I, Springer Verlag Berlin-Göttingen-Heidelberg, 1964, S. 588.
- 10 C. WASTERNACK, Pharmazie, 27 (1972) 65.
 11 C. WASTERNACK, unveröffentlicht.
- 12 L. SWEETMAN UND W. NYHAM, J. Chromatogr., 32 (1968) 662.

- 13 C. A. STREULI, J. Chromatogr., 56 (1971) 219.
 14 C. A. STREULI, J. Chromatogr., 56 (1971) 225.
 15 T. HOHN UND H. SCHALLER, Biochim. Biophys. Acta, 138 (1967) 466.
- 15 L. HOHN UND FL. SCHALLER, BIOCHIM. BIOPHYS. Acta, 138 (1967) 466.
 16 H. DETERMANN UND I. WALTER, Nature, 219 (1968) 604.
 17 M. JOHN, G. TRÉNEL UND H. DELLWEG, J. Chromatogr., 42 (1969) 476.
 18 H. DELLWEG, M. JOHN UND G. TRÉNEL, J. Chromatogr., 57 (1971) 89.
 19 N. V. B. MARSDEN, Ann. N.Y. Acad. Sci., 125 (1965) 428.

- 20 A. J. W. BROOK UND K. C. MUNDAY, J. Chromatogr., 47 (1970) 1.

J. Chromatogr., 71 (1972) 67-81